任何事物只有放在它所存在的环境中,才能准确理解它的本质。今天,大数据、人工智能等概念由于商业炒作等多方面的原因,已经变得模糊不清了。许多具体的技术也被罩上了夺目的光环,或有意被赋予了能够引发奇妙想象的名字,如“深度学习”。
下面,我们来看一下信息技术产业中的不同要素,在从科学到应用的这个链条上,各自处于什么样的位置。为了不陷入不必要的细节而又能揭示本质,我们将这个链条分为五个环节:科学原理,基础共性技术,具体应用技术,基础系统原理/技术及具体应用系统,见图1。
图1 从科学原理到应用系统,图片。人工智能领域不仅没有科学原理层面的成果,而且至今也没有能够产生支撑一个产业的基础共性技术,不论我们给那些技术/方法起个什么样的名字。
在基础共性技术之上,还有面向不同问题的具体应用技术去解决不同类型的问题。在这个层面,我们才遇到了人工智能的踪影。如我们在《转折——眺望IT峰》一书第八章第二节中所述:“当人们意识到我们没有能力用一些普适的基本逻辑化规则或机制去有效地解决各种‘智能问题’时,人工智能的研究便扎入到了各种具体的问题之中。针对不同类型的问题,发展出了花样繁多的解决方法,也取得了很大的进展。…….也正因为如此,人工智能目前更多地是被当成了一些具体的应用工具方法,融入到了不同类型的应用之中,以自己具体的技术性名称出现,默默无闻地发挥着自己的作用。这些年关于人工智能的一本经典的教科书的名字是‘人工智能——一种现代方法’,……它的副标题‘A Modern Approach’就是指试图采用‘智能体’(Agent)的概念将人工智能在各个不同领域中的方法整合到一个统一的框架之中。”
其实,用智能体这个概念整合与人工智能相关的技术方法,也是没有办法的办法,显示出了这个领域的一种无奈的现实:只有实用的一些具体技术方法,缺少科学原理或基础共性技术的支撑,也没有基础性系统级的有效理论。这些年被热捧的“深度学习”,也是这个层面的技术。
“深度学习”这个概念包括了深度信念网络、卷积神经网络、循环与递归网络等多种不同的具体网络模型与相应的算法,用来解决不同类型的问题。它们实际上是借助计算机的“暴力”计算能力,用大规模的、含有高达千万以上的可调参数的非线性人工神经网络,使用特定的“学习/训练”算法,通过对大量样本的统计处理,调整这些参数,实现非线性拟合(变换),从而实现对输入数据特征的提取与后续的分类等功能。
它是解决特定类型问题的一些具体的方法,而不是具有像人那样的一般意义上的学习的能力,尽管这个名字确实引发了许多不了解这个技术的人的这方面的想象。其实,信息技术领域内的绝大部分技术,基本都属于这个层面,包括与大数据相关的技术,而且它们也都属于辅助智能性质的技术。所以,大数据、人工智能与其它的技术彼此的界限日益模糊。
这些具体的实用性技术,包括“深度学习”(人工神经网络),常常是实验性技术,在应用于一个新的具体问题之前,我们无法确定它是否能够有效地解决这个问题,或者能够将问题解决到什么程度。
转载请注明:杉德畅刷官网 » 谢耘:人工智能技术的本质与系统性创新的意义